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Abstract 

The validity of the Kappa coefficient of chance-corrected agreement has been questioned when 

the prevalence of specific rating scale categories is low and agreement between raters is high. 

The researchers proposed the Lambda Coefficient of Rater-Mediated Agreement as an 

alternative to Kappa to address these concerns. Lambda corrects for chance agreement based on 

specific assumptions about raters and the rater-mediated assessment process including rater-

specific tendencies for strict or lenient ratings. Actual ratings of teacher profiles from an inter-

rater reliability exercise confirmed the shortcomings of Kappa when used within the teacher 

performance evaluation process. Rater data also demonstrated the robustness of Lambda and 

Gwet’s AC-1 to the data conditions known to be problematic for Kappa. All alternative chance-

corrected agreement coefficients evaluated showed less variability across the 57 raters than 

Kappa. Simulation results demonstrated the robustness of the Lambda Coefficient of Rater-

Mediated Agreement to the data conditions that are problematic for Kappa. 

  



Examining the Inter-Rater Reliability of Evaluators Judging Teacher Performance: 

An Alternative to Cohen’s Kappa 

Cohen’s Kappa (Cohen, 1960) and Weighted Kappa (Cohen, 1968) are widely used 

measures of chance-corrected agreement between raters. Various questions have been raised 

about whether Kappa is actually correcting for chance agreement, whether it is useful for 

identifying and separating various sources of disagreement, the validity of Kappa coefficients 

when prevalence of specific categories on a rating scale is low, the validity of Kappa coefficients 

when agreement is high, and the generalizability of Kappa coefficients across populations and 

study conditions (Cicchetti & Feinstein, 1990; Feinstein & Cicchetti; 1990; Thompson & Walter, 

1988). Gwet (2008) introduced AC-1 and AC-2 as alternatives to Kappa and demonstrated they 

are robust indexes not susceptible to the identified shortcomings of Kappa. 

This study proposes an alternative to Kappa, Weighted Kappa, AC-1, and AC-2 that is 

rooted in theory regarding rater-mediated assessment (Engelhard & Wind, 2018). The Lambda 

Coefficient of Rater-Mediated Agreement is designed for use with ordinal scales that are often 

used to evaluate teacher performance. It examines inter-rater agreement corrected for the 

probability that raters may agree with expert raters by chance due to the response process they 

employ when they are uncertain about how to place a teacher on a rubric.  

 Most research on rater cognition focuses on the mental processes used by raters of 

student or examinee performance. The rating process employed by raters judging examinee 

constructed responses can be intricate, complex, and require subtle judgments between adjacent 

categories on a rubric. However the judgment of teacher performance can pose even greater 

complexities. In addition to the complexities of grading constructed response questions, teacher 

evaluators can be asked to make many ratings across multiple dimensions and base their ratings 



on a complex set of indicators that can include classroom observations, interviews with students 

and teachers, analysis of student work, and review of artifacts from the instructional process. 

Similar to other examples of rater-mediated assessments, an observers’ level of expertise and 

classroom experience, the availability of evidence and artifacts, and the overall scoring task 

demands, can all drive ratings of teachers (Bell et al., 2018; Suto, 2012).  

Rater-Mediated Assessment Theory 

 Understanding rater cognition is crucial to making a validity argument to support the use 

of any rater-mediated assessment measure. According to Standard 1.12, which addresses 

“evidence regarding cognitive processes”, in the Standards for Educational and Psychological 

Testing (2014): 

“If the rationale for score interpretation for a given use depends on premises about the 

psychological processes or cognitive operations of test takers, then theoretical or 

empirical evidence in support of those premises should be provided. When statements 

about the processes employed by observers or scorers are part of the argument for 

validity, similar information should be provided.” (p. 26) 

To meet this standard, validity evidence must extend beyond a review of rater training. Analysis 

and interpretation of raters’ cognitive processes are required to ensure those processes are 

congruent with the measured construct (Bejar, 2012). In addition, simulated rating exercises and 

standards for agreement with expert raters are essential components of the validity argument. For 

example, it is common to provide raters a set of exemplar and non-exemplar responses to serve 

as anchors or benchmarks for scoring decisions.  

 Engelhard et al. (2018) asserted the validity, reliability, and fairness of rater-mediated 

assessments relies on both the quality of the rater’s cognitive process and psychometric 



properties of the measure. In rater-mediated assessment, understanding raters’ scoring processes 

is an important component in understanding what is actually being measured by an assessment 

(Crisp, 2012). Interpreting and anticipating a rater’s cognitive process “can provide practical 

information to assist those who are designing performance tasks and rubrics, selecting raters, 

training raters, and developing quality control procedures to monitor rater performance, 

particularly in ‘real time’ as a scoring session is proceeding” (Myford, 2012, p. 49).  

 The lens model proposed by Brunswik (1952) was initially designed as a human 

judgment and decision-making model. This model was adapted by Engelhard (2013) as a 

conceptual framework for rater judgment and decision-making. The goal of this adapted version 

of the lens model “is to have a close correspondence between the latent variable and the observed 

ratings” (Engelhard & Wind, 2018, p. 81). This connection resides within the process through 

which raters interact with the items and the rating scale. In the case of teacher performance 

evaluation, observers interact with a multidimensional rubric which requires raters to have a high 

level of expertise, skill in interpreting a wide range of indicators, and an ability to analyze 

evidence to arrive at placements on a rating scale.  

The following set of assumptions about raters of teacher performance, and the complex 

response process they use to arrive at ratings, serve as a theoretical foundation for the Lambda 

Coefficient of Rater-Mediated Agreement. These assumptions are rooted in our work as trainers, 

managers, and observers who are charged with ensuring the validity of one state’s teacher 

performance evaluation process. We posit the following principles regarding the internal 

cognitive process raters employ when they are confident about which rating to assign: 

● Raters are trained evaluators and function as expert professionals. 

● Rather than acting as scoring machines, raters bring their own experiences and expertise 



to the rating process. 

● Raters use a complex, three-stage internal response process to make ratings. 

o First, raters acquire an overall impression, based on global evidence, to arrive at a 

starting point on a rubric or rating scale.  

o Second, raters synthesize information from previous ratings, analyze 

observational data, and interpret evidence and artifacts. 

o Third, raters combine their overall impressions with their analysis of evidence to 

settle on a final placement on a rubric or rating scale. 

● A rater’s individual tendencies toward strictness and leniency influence this complex  

internal response process. 

This process functions at several levels. When raters consider how to make a rating on an 

item that addresses a specific area of practice, such as ratings focused on particular 

competencies, they start with their overall impression, analyze a variety of item-specific pieces 

of evidence, synthesize the ratings they have made across items that address similar content, and 

then settle on a final rating. Similarly, when raters make global ratings, such as ratings of overall 

effectiveness or quality, they may start with their overall impression, analyze a variety of pieces 

of evidence, synthesize the ratings they have made across items that address various content 

areas, and then settle on a final rating.  

Furthermore, we posit raters do resort to guessing, or at least a random process similar to 

guessing, when they are uncertain about a particular rating. We posit the following principles 

regarding the internal cognitive process raters employ when they are uncertain about which 

rating to assign:  

● Professional raters can be, on occasion, uncertain about their selection of ratings. 



● A professional rater may, on occasion, lack the experience, expertise, or evidence to have 

confidence in a particular rating. 

● When uncertain, raters make ratings by a random process that mimics the three-stage  

internal cognitive response process they use when confident in their ratings. These 

ratings may, by chance, agree with the ratings of another rater or those from an 

expert panel. 

● When uncertain, raters select a random starting point for deliberations. 

● When uncertain, raters may synthesize previous ratings and analyze evidence, but this 

process does not resolve their uncertainty. When uncertain, raters may have little  

confidence in their previous ratings and may lack sufficient evidence to support a 

particular rating. 

● When uncertain, raters combine their initial random starting point with their inconclusive 

analysis of evidence to settle on a final rating. 

● A rater’s individual tendencies toward strictness and leniency influence this random  

response process.  

We developed the Lambda Coefficient of Rater-Mediated Agreement based on these 

assumptions concerning the response process raters use when applying ordinal ratings scales to 

tasks such as teacher performance evaluation.  

The Lambda Coefficient of Rater-Mediated Agreement 

 Cohen (1960) introduced the Kappa coefficient of chance-corrected agreement. Kappa is 

equivalent to the proportion of the ratings that are in agreement with another rater, after removing 



the proportion of the agreement ratings that may have occurred by chance. The formulae take the 

following forms: 

κ = (pa – pe) / (1 – pe)     (1) 

σκ = √ { [pa(1 – pa)]  /  [n(1 – pe)
2] }    (2) 

Where: 

pa = Proportion of exact agreement. 

pe = Expected proportion chance agreement. For Kappa, this quantity is equal to the sum of the  

products of the marginal proportions associated with each cell. 

n = number of ratings. 

 There have been various alternatives to Kappa proposed in the years since (Brennan & 

Prediger, 1981; Bryt et al., 1993; Gwet, 2008; Holley & Guilford, 1964; Jason & Vegelius, 1979; 

Krippendorff, 1970; Maxwell, 1970; Perreault & Leigh, 1989). In addition, Bennett et al. (1954) 

proposed a method equivalent to the method reintroduced by Bryt et al. (1993) prior to the 

introduction of Kappa. These alternatives to Kappa were developed based on the assumptions of 

generalizability theory, applications for nominal scales, or both. Their focus was primarily on 

agreement among raters, judges, or observers with respect to the presence or absence of specific 

characteristics, symptoms, or diagnoses. Such applications do not involve rater strictness or 

leniency that is often present in rater use of ordinal rating scales.  

 We are proposing the Lambda Coefficient of Rater-Mediated Agreement for a different 

set of applications. We are proposing the Lambda based on the theoretical propositions of rater-

mediated assessment (Engelhard & Wind, 2018) and our applied work with teacher performance 

evaluations. Teacher performance evaluations are typically conducted using ordinal scales. The 

agreement of interest is between individual raters and expert raters. Furthermore, teacher 



performance evaluations are high stakes endeavors, and strict or lenient ratings can have 

significant consequences for teachers. Evaluators make placements on such scales based on 

observational data, interviews with teachers, classroom conditions and artifacts, student work 

samples, and general overall impressions. Raters bring their own personal tendencies toward 

strictness or leniency, or even biases, to this rating process. In addition, teacher evaluators can be 

uncertain about a particular rating and can use a random process to settle on their final 

placements on ordinal rating scales. Our goal is to correct for chance agreement that may occur 

due to this complex cognitive process. 

We set out to develop a chance-corrected agreement coefficient for use in a specific, yet 

commonly occurring rating situation: raters using holistic scoring to arrive at placements on an 

ordinal scale. The goal was to evaluate individual agreement with an expert panel that has 

achieved consensus regarding “correct” answers. Therefore, we were not interested in creating a 

measure of the consistency of a group of ratings, but rather focused on the accuracy of individual 

raters relative to a standard. The target was a descriptive statistic about the behavior of individual 

raters that may provide useful information within a training or inter-rater reliability (IRR) 

certification process.  

We established several desirable criteria for the proposed statistic. First, Lambda had to 

agree with Kappa when all ratings fall on the main diagonal of the ratings matrix formed by 

completely crossing an evaluators ratings with those of an expert panel. When all rater 

placements are in agreement with the expert ratings, Lambda and Kappa both = 1.0. 

Furthermore, when rater agreement, strictness, and leniency are all equal this is equivalent to a 

rater cognitive process that involves simple guessing. Therefore, Kappa and Lambda should 

agree in these circumstances and they do. Next, we sought a coefficient that would equal zero 



when all ratings in the ratings matrix have equal frequency, and both Kappa and Lambda equal 

zero under these circumstances.  

Finally, we sought to develop a coefficient that has a reasonable upper bound on the 

magnitude of the correction for chance, similar to Gwet’s approach (2008). This upper bound for 

both Lambda and Gwet’s coefficients is set to .50. This value has an intuitive and practical 

appeal in addition to its mathematical advantages. When raters use an ordinal rating scale, 

“guessing” often resides within deliberations between adjacent steps on the rating scale. Raters 

may struggle to resolve uncertainty between adjacent steps on a rating scale more often than they 

randomly select a rating from across an entire rating scale. Lambda-1, described below, met all 

of these criteria. For example, Lambda-1 has an upper bound on chance agreement of .5 for a 

4x4 ratings matrix as defined by these quantities.  

pe ≤ 2L / q    (3) 

pe ≤ 2S / q     (4) 

Where: 

pe = Expected proportion chance agreement.  

L = proportion of ratings that are lenient, or above the “correct” or “expert” rating. 

S = proportion of ratings that are strict, or below the “correct” or “expert” rating. 

q = number of steps on the ordinal rating scale. 

The general form for Lambda (λ), applicable to both Lambda-1 (λ1) and (λ2), and to rating 

scales with any number of steps, can be expressed as: 

λ = (pa – pe) / (1 – pe)      (5) 

pe = Σ  ps pc pf       (6) 

σλ = √ { [pa(1 – pa)]  /  [n(1 – pe)
2] }    (7) 



Where: 

pa = Proportion of exact agreement. 

pe = Proportion expected chance agreement. 

Σ = Sum across all cells from r=1, c=1 to r=q, c=q. 

r = row. 

c = column. 

n = number of ratings. 

q = The number of steps on the ordinal rating scale. 

ps = Probability of picking the given cell as a starting point (s) for deliberation. 

pc = Proportion of ratings for which the given column (c) is used as a correct answer.  

pf = Expected probability of exact agreement when the given cell was used as a starting point,  

 and the rater makes a final (f) rating informed by their tendency for agreement, strictness,  

 and leniency. 

The only difference between λ1 and λ2 is the formula for ps. For λ1, ps = 1/q. This value 

assumes the rater is uncertain about which rating to give, arrives at a random starting point for 

their deliberations, and is equally likely to select any of the points on the rating scale as a starting 

point. For λ2, ps is set to the proportion of the total ratings given in the population case associated 

with the cell in question. This value is the marginal proportion for the given row in the 

agreement matrix. This value also assumes the rater is uncertain about which rating to give, uses 

guessing as a means to arrive at a starting point for their deliberations, and their internal guessing 

process weights the points on the rating scale according to how frequently they encounter each 

level on the rating scale in the population. This approach assumes the population proportions of 

ratings are known and expectations regarding the skill levels evaluators typically encounter in 



the field influence an evaluator’s selection of starting point for deliberation. So for example, if a 

rater rarely encounters a teacher with the skill level associated with a particular point on the 

rating scale, λ2 assumes the rater would be much less likely to select that point as a starting point 

for deliberations.  

It is important to note that when all steps on a ratings scale are equally likely in the 

population, λ1 = λ2. To illustrate how λ1 and λ2work in practice, see Figure 1 for a two-point 

ordinal rating scale. See Figure 2 for a three-point ordinal rating scale and Figure 3 for a four-

point ordinal rating scale. Just for illustration purposes, we have included category labels that 

might apply to a teacher performance evaluation rubric. 

The Current Study 

 The purpose of this study was twofold. First, the researchers sought to test the 

performance of λ relative to Kappa, AC-1, and AC-2 using field data. Second, the researchers 

sought to evaluate λ relative to Kappa, AC-1, and AC-2 with simulated data that represents the 

high agreement / low frequency of specific categories data conditions under which Kappa is 

known to yield paradoxical results. Specifically, this study examined the following research 

questions: 

1. How does the Lambda Coefficient of Rater-Mediated Agreement perform relative to 

Kappa, AC-1, and AC-2 given real world teacher performance evaluation data? 

2. Does the Lambda Coefficient of Rater-Mediated Agreement yield chance-corrected 

coefficients of agreement that are robust to data conditions that have been shown to be 

problematic for Kappa (high agreement and some rating scale categories with low 

prevalence)? 

 



Methods 

Evaluators charged with conducting state-mandated performance evaluations of all 

licensed pre-kindergarten teachers working in non-public school settings within one state 

participated in an IRR certification exercise. Evaluators (n=57) made placements on five 

progressions across each of 10 online teacher profiles for a total of 2,850 ratings. The evaluators 

rated teacher profiles using the North Carolina Teacher Evaluation Process rubric, which is the 

same teacher performance evaluation measure used to conduct evaluations across the entire state 

for teachers of all licensure levels. The measure includes five progressions, each of which 

measures performance relative to a specific teaching standard. Each progression contains specific 

behavioral anchors and is supported by a series of rubrics called “elements.” The evaluators used 

the same four-point rating scale for all standards and elements. The ordinal scale points were 

labeled (1) Developing, (2) Proficient, (3) Accomplished, and (4) Distinguished. Agreement was 

evaluated by comparing an evaluator’s ratings to the “correct answer” which consisted of 

consensus ratings from a panel of five experts. The following statistics were calculated for each 

evaluator using the criteria for exact agreement with the expert panel: a.) agreement, leniency, 

and strictness percentages, b.) Cohen’s Kappa, c.) Lambda-1 Coefficient of Rater-Mediated 

Agreement, d.) Lambda-2 Coefficient of Rater-Mediated Agreement, e.) Gwet’s AC-1, f.) 

Gwet’s AC-2, and g.) the level of each rater’s performance according to well established 

classification systems (Altman, 1991; Fleiss, 1981).  

An alternative scoring strategy that allowed for agreement between some adjacent ratings 

was also developed. Adjacent agreement was defined as an expert panel rating of “Proficient” 

and an evaluator rating of either “Proficient” or “Accomplished”, or an expert panel rating of 

“Accomplished” and an evaluator rating of either “Proficient” or “Accomplished.” Exact 



agreement was still required for expert panel ratings of either “Developing” or “Distinguished.” 

The rationale was there is no difference in how teachers who are rated as “Proficient” or 

“Accomplished” are treated within either a mentoring or a performance evaluation context in the 

particular state under investigation. Teachers must obtain ratings of at least “Proficient” across 

all standards by the end of their third year of teaching. Therefore, teachers rated as “Developing” 

receive additional support and mentoring. Teachers rated “Distinguished” are rare and may be 

asked to serve as model teachers, mentors, or evaluators. The same statistics were calculated for 

each evaluator using the criteria for adjacent agreement with the expert panel: a.) agreement, 

leniency, and strictness percentages, b.) Cohen’s Kappa, c.) Lambda-1 Coefficient of Rater-

Mediated Agreement, d.) Lambda-2 Coefficient of Rater-Mediated Agreement, e.) Gwet’s AC-1, 

f.) Gwet’s AC-2, and g.) the level of each rater’s performance according to well established 

classification systems (Altman, 1991; Fleiss, 1981). It should be noted that the Kappa coefficient 

for the adjacent agreement condition is equivalent to a special case of Weighted Kappa (Cohen, 

1968) with weights assigned according to this particular adjacent scoring scheme. 

Results 

First, we examined the distribution of the agreement, strictness, and leniency percentages 

for all 57 raters across both the exact and adjacent agreement conditions. Table 1 contains the 

mean, standard deviation, and five number summary for each of these percentages. The mean 

percent exact agreement across the 57 evaluators was 69.6% (SD=9.5) and values ranged from 

42.0% to 88.0%. The mean percent lenient for exact agreement was 8.1% (SD=6.5) and values 

ranged from 0.0% to 26.0%. The mean percent strict for exact agreement was 22.2% (SD=11.6) 

and values ranged from 4.0% to 58.0%. Therefore, the raters as a group displayed moderate 



levels of agreement and were more likely to be strict than lenient. However, a substantial 

minority of raters (n = 7, 12.3%) agreed with the expert panel for less than 60% of their ratings.  

As expected, agreement percentages increased, and strictness and leniency percentages 

decreased, for the adjacent agreement condition. Only four of the 57 raters (7.0%) displayed 

adjacent agreement percentages less than 80%. The mean percent adjacent agreement across the 

57 evaluators was 88.6% (SD=6.8) and values ranged from 64.0% to 100.0%. The mean percent 

lenient for adjacent agreement was 2.4% (SD=2.8) and values ranged from 0.0% to 10.0%. The 

mean percent strict for adjacent agreement was 9.0% (SD=7.2) and values ranged from 0.0% to 

36.0%. For the adjacent agreement condition, strictness was again greater than leniency; 

however, both values were much lower than they were in the exact agreement condition.  

The distributions of each of five coefficients of chance-corrected agreement were 

compared to address research question one. Table 2 contains the mean, standard deviation, and 

five number summary for each of the coefficients were calculated. The mean Kappa for exact 

agreement was .497 (SD=.152) and values ranged from .121 to .790. The mean Lambda-1 

Coefficient of Rater-Mediated Agreement for exact agreement was .591 (SD=.131) and values 

ranged from .199 to .840. The mean Lambda-2 Coefficient of Rater-Mediated Agreement for 

exact agreement was .515 (SD=.141) and values ranged from .121 to .798. The mean Gwet’s 

AC-1 for exact agreement was .618 (SD=.121) and values ranged from .273 to .852. The mean 

Gwet’s AC-2 for exact agreement was .472 (SD=.092) and values ranged from .356 to .548. 

However, Gwet’s AC-2 was undetermined for 51 of the 57 raters. Figure 4 displays these 

distributions as boxplots. AC-2 was not included due to small sample size (n = 6). The boxplots 

show that λ1, λ2, and Gwet’s AC-1 yielded less severe and less variable corrections for chance 



agreement than Kappa. λ1, λ2, and AC-1 showed sensitivity to one outlier rater not detected by 

Kappa. 

A very consistent rank order of correction among the alternatives to Kappa emerged for 

the exact agreement condition (see Figure 6). Lambda-2 was closest to Kappa for almost all 

raters. λ1 yielded coefficients that were consistently higher than Kappa and λ2 and lower than 

AC-1. AC-1 emerged as yielding the consistently highest coefficients. AC-2 was not included in 

these comparisons due to the small sample size. As seen in Figure 6, the most dramatic changes 

to the relatively consistent rank order of the coefficients appear between λ1 and AC-1 as 

indicated by several lines that break from the overall pattern.  

The mean Kappa for adjacent agreement was .686 (SD=.145) and values ranged from 

.315 to 1.000 (see Table 3). The mean λ1 for adjacent agreement was .828 (SD=.104) and values 

ranged from .442 to 1.000. The mean λ2 for adjacent agreement was .661 (SD=.166) and values 

ranged from .192 to 1.000. The mean Gwet’s AC-1 for adjacent agreement was .861 (SD=.087) 

and ranged from .532 to 1.000. The mean Gwet’s AC-2 for adjacent agreement was .787 

(SD=.052) and values ranged from .687 to .831. However, again Gwet’s AC-2 was undetermined 

for 51 of the 57 raters. Figure 5 displays these distributions as boxplots. AC-2 was not included 

due to small sample size (n = 6). The boxplots show that λ1, λ2, and Gwet’s AC-1 yielded less 

severe and less variable corrections for chance agreement than Kappa. λ1 and AC-1 yielded 

similar distributions and displayed less variability than Kappa or λ2. All four coefficients 

detected the same outlier rater. 

A very consistent rank order of correction among the alternatives to Kappa emerged for 

the adjacent agreement condition as well (see Figure 7). λ2 was closest to Kappa for almost all 

raters. λ1 coefficients were higher than Kappa and λ2 and lower than AC-1. AC-1 yielded the 



highest coefficients for almost all raters. AC-2 was again not included in these comparisons due 

to the small sample size (n = 6). There was only one exception to this pattern. One rater had 

100% adjacent agreement with the expert panel and all coefficients equaled 1.00. 

The research literature regarding chance-corrected agreement contains several systems 

for classifying coefficients as above or below acceptable levels. Altman’s system (1991) includes 

the following criteria: poor (.00 - .20), fair (>.20 - .40), moderate (>.40 - .60), good (>.60 - .80, 

and very good (>.80). Similarly, Fleiss (1981) offered the following criteria: poor (≤.40), fair 

(.40 - .60), good (>.60 - .80), and excellent (>.80). As a final examination of evidence to address 

research question one, the coefficients from the current study were classified according to these 

two sets of standards. Table 4 contains the results of applying Altman’s criteria (1991) to the 

Kappa, λ1, λ2, and AC-1 coefficients for all 57 evaluators and Table 5 contains the results of 

applying Fleiss’ criteria (1981). Good and Excellent according to Fleiss (1981) and Good and 

Very Good according to Altman (1991) use the same criteria and therefore produce the same 

classifications. If these levels were used to indicate acceptable evaluator performance, only 

26.3% of evaluators would have passed the exercise using Kappa. Using λ2, 29.8% would have 

passed, followed by 43.9% for λ1 and 54.4% for AC-1. As expected, the passing rates would have 

been quite higher using the adjacent agreement scoring procedure: Kappa (75.6%), λ2 (61.4%), λ1 

(98.2%), and AC-1 (98.2%). Therefore, substantially more evaluators would have passed the 

IRR exercise using either λ1 or AC-1. 

The two systems differ in two ways. Altman (1991) includes a moderate agreement level 

while Fleiss (1981) does not. Fleiss (1981) suggests a broader range for poor agreement (≤.40) 

compared to Altman’s (1991) (≤.20). Very few evaluators, two or fewer, met Altman’s criteria 

for “poor” across all four coefficients using either the exact or adjacent agreement methods. 



However, using Fleiss’ criteria, a substantial minority of evaluators would have been classified 

as exhibiting “poor” agreement using exact agreement and Kappa (26.3%). The exact agreement 

method and λ2 also identified a substantial minority of evaluators as exhibiting poor agreement 

(19.3%). Exact agreement using λ1 or AC-1 classified only three evaluators in the poor 

agreement category (5.3%)  

A simulation study addressed research question two. The simulation design extended the 

approach of Xie (2013) to include λ1 and λ2. For the purpose of this simulation study, we defined 

the Bias Index as Strictness minus Leniency (expressed as proportions). We defined the 

Prevalence Index as the proportion of rater selections using the lowest point on the ratings scale 

minus the proportion of rater selections using the highest point on the rating scale. We varied the 

Prevalence Index across all possible values for each condition. Four simulated conditions used a 

four point rating scale similar to the real world data conditions reported for research question 

one. These four conditions included high agreement and low category frequency conditions 

known to be problematic for Kappa. The four conditions were: 1.) Agreement = 95%, Bias Index 

= .05, Prevalence ranged from .95 to -.95, 2.) Agreement = 90%, Bias Index = .10, Prevalence 

ranged from .90 to -.90, 3.) Agreement = 85%, Bias Index = .15, Prevalence ranged from .85 to -

.85, and 4.) Agreement = 80%, Bias Index = .20, Prevalence ranged from .80 to -.80. We 

calculated Kappa, λ1, and λ2 for each of the four conditions across the applicable range of the 

Prevalence Index. 

For condition 1 (95% agreement), the mean Kappa was .820 (SD = .147) and values 

range from -.053 to .904. The mean λ1 was .933 (SD = .001) and values range from .932 to .934. 

The mean λ2 was .842 (SD = .094) and values range from .487 to .907. Therefore, λ1 yielded very 

consistent values (see Figure 8), Kappa yielded very inconsistent and over-corrected values, and 



λ2 followed a similar pattern as Kappa but did not over-correct as much when the Prevalence 

Index was high. The remaining three conditions yielded similar patterns. For condition 2 (90% 

agreement), the mean Kappa was .739 (SD = .111) and values range from .298 to .825. The mean 

λ1 was .867 (SD = .002) and values range from .863 to .871. The mean λ2 was .752 (SD = .090) 

and values range from .474 to .826. For condition 3 (85% agreement), the mean Kappa was .674 

(SD = .095) and values range from .355 to .756. The mean λ1 was .801 (SD = .005) and values 

range from .793 to .810. The mean λ2 was .683 (SD = .080) and values range from .460 to .755. 

For condition 4 (80% agreement), the mean Kappa was .621 (SD = .082) and values range from 

.370 to .696. The mean λ1 was .737 (SD = .008) and values range from .722 to .750. The mean λ2 

was .625 (SD = .070) and values range from .444 to .691. For all four conditions, Lambda-2 

tended to over-correct less than Kappa for high values of the Prevalence Index, converge with 

Kappa as the Prevalence Index got smaller, and yield nearly identical values to Kappa at the 

minimum values of the Prevalence Index. λ1 remained very consistent within each of the 

simulated conditions. 

Discussion 

The results of this study confirmed and extended previous research (Gwet, 2008) by 

illustrating the shortcomings of Kappa as a measure of chance-corrected agreement and the 

robustness of AC-1 to the data conditions associated with these shortcomings. These results also 

illustrated how the proposed Lambda-1 Coefficient of Rater-Mediated Agreement is resistant to 

the data conditions that are problematic for Kappa, and offers a slightly more conservative, less 

variable measure of chance-corrected agreement than AC-1 while also demonstrating greater 

sensitivity to outlier raters.  



The data from this study contained various examples, both real and simulated, of the high 

agreement / low frequency of specific rating scale categories problem. For example, the real 

world data included very infrequent use of the “Distinguished” category by the evaluators or 

experts. In practice, raters use “Distinguished” very rarely and reserve its use for truly 

exceptional teachers. The paradoxical performance of Kappa found in previous studies under 

these data conditions was confirmed (Cicchetti and Feinstein, 1990; Gwet, 2008). Consistent 

with previous research, Cohen’s Kappa was overly sensitive and over-corrected when agreement 

was high and there was low frequency of specific categories on the rating scale. Cohen’s Kappa 

yielded results consistent with the paradox problem in which percent agreement is high and 

Cohen’s Kappa is low or even .000. However, both Lambda-1 Coefficient of Rater-Mediated 

Agreement and Gwet’s AC-1 yield results that were robust to both of these data conditions.   

Separate examinations of the fictitious teacher profiles revealed several stark examples of 

this pattern. For example, neither the expert panel nor the evaluators selected ratings of 

“Accomplished” or “Distinguished” for Profile 4. Across all 57 raters, agreement was high 

(93.33%) for this profile for both the exact and adjacent methods. However, Cohen’s Kappa was 

.000 for the exact method while λ1 equaled .913 and AC-1 equaled .932. Cohen’s Kappa was 

also .000 for the adjacent method while λ1 equaled .903 and AC-1 equaled .933. Similarly, for 

Profile 5 no ratings of “Developing” or “Distinguished” were selected by either the expert panel 

or the evaluators, and agreement was moderate (63.11%) for exact method and high for the 

adjacent method (96.44%). However, Cohen’s Kappa was .000 for the exact method while λ1 

equaled .508 and AC-1 equaled .589. Cohen’s Kappa was also .000 for the adjacent method 

while λ1 equaled .947 and AC-1 equaled .964.  



It is important to point out that λ is not meant to provide the rich information that a more 

complex measurement model can provide about individual raters and their tendencies. For 

example, the Many-Facets Rasch Model (Linacre, 1989) can provide a detailed calibration of 

individual rater strictness and leniency and potential biases. λ is a single coefficient and is 

agnostic to where in the rating space strictness or leniency occurs. It cannot detect or identify the 

steps on a rating scale that are associated with a rater’s tendencies for strictness or leniency. It is, 

however, useful as a red flag, as one indicator among many, of the need to support, retrain, or 

recertify individual raters.  

 In conclusion, this study confirmed the advantages of AC-1 over Kappa demonstrated in 

previous research (Gwet, 2008). In addition, this study introduced the Lambda Coefficient of 

Rater-Mediated Agreement. Lambda is rooted in the theoretical underpinnings of rater-mediated 

assessment (Engelhard & Wind, 2018). It operationalizes a series of proposed principles 

regarding the complex process by which raters make placements on ordinal progressions. Future 

research is needed to test these theoretical propositions and to investigate the cognitive processes 

raters use when they feel confident in their ratings and when they are uncertain. The current 

study, with both field data and simulated data, highlighted the robustness of the Lambda 

Coefficient of Rater-Mediated Agreement to the data conditions that are problematic for Kappa. 

Future research is needed to test Lambda across a wider range of field and simulated data 

conditions. 
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Table 1

Agreement, leneincy, and srrictness percentages across both the exact and adjacent agreement conditions

Agreement Leniency Strictness Agreement Leniency Strictness

Mean 69.6% 8.1% 22.2% 88.6% 2.4% 9.0%

SD 9.5% 6.5% 11.6% 6.8% 2.8% 7.2%

Minimum 42.0% 0.0% 4.0% 64.0% 0.0% 0.0%

25th percentile 64.0% 3.0% 13.0% 86.0% 0.0% 4.0%

Median 70.0% 8.0% 22.0% 90.0% 2.0% 8.0%

75th percentile 77.0% 12.0% 28.0% 94.0% 5.0% 14.0%

Maximum 88.0% 26.0% 58.0% 100.0% 10.0% 36.0%

Exact Agreement Adjacent Agreement



 
  

Table 2

Chance corrected agreement for the exact agreement condition

Kappa Lambda-1 Lambda-2 AC-1 AC-2

Mean 0.497 0.591 0.515 0.618 0.472

SD 0.152 0.131 0.141 0.121 0.092

Minimum 0.121 0.199 0.121 0.273 0.356

25th percentile 0.387 0.514 0.430 0.534 0.359

Median 0.485 0.594 0.514 0.622 0.512

75th percentile 0.611 0.694 0.625 0.713 0.547

Maximum 0.790 0.840 0.798 0.852 0.548



  
  

Table 3

Chance corrected agreement for the adjacent agreement condition

Kappa Lambda-1 Lambda-2 AC-1 AC-2

Mean 0.686 0.828 0.661 0.861 0.787

SD 0.145 0.104 0.166 0.087 0.052

Minimum 0.315 0.442 0.192 0.532 0.687

25th percentile 0.604 0.787 0.573 0.827 0.763

Median 0.672 0.849 0.674 0.878 0.799

75th percentile 0.769 0.910 0.791 0.928 0.822

Maximum 1.000 1.000 1.000 1.000 0.831



 
Figure 1. Calculation of Lambda for a 2x2-agreement matrix. 

  

1 2

Rater

P·1 P·2 N

A    P(Agreement) = (a + d) / N

S    P(Strictness) = b / N

L    P(Leniency) = c / N

P1·  = (a + b) / N P·1  = (a + c) / N

P2·  = (c + d) / N P·2  = (b + d) / N

N  =

Cell Lambda-1 Lambda-2

1,1 (1 / q) * (P·1) * (A+S) ( π1 ) * (P·1) * (A+S)

2,1 (1 / q) * (P·1) * S ( π2 ) * (P·1) * S

1,2 (1 / q) * (P·2) * L ( π1 ) * (P·2) * L

2,2 (1 / q) * (P·2) * (A+L) ( π2 ) * (P·2) * (A + L)

1

2

Value

Expert Panel

a b P1·

c d P2·

  

 

   

     

   

     



 
Figure 2. Calculation of Lambda for a 3x3-agreement matrix. 

1 2 3

Rater

P·1 P·2 P·3 N

A    P(Agreement) = (a + e + i) / N

S    P(Strictness) = (b + c + f) / N

L    P(Leniency) = (d + g + h) / N

P1·  = (a + b + c) / N P·1  = (a + d + g) / N

P2·  = (d + e + f) / N P·2  = (b + e + h) / N

P3·  = (g + h + i) / N P·3  = (c + f + i) / N

N  =

Cell Lambda-1 Lambda-2

1,1 (1 / q) * (P·1) * (A+S) ( π1 ) * (P·1) * (A+S)

2,1 (1 / q) * (P·1) * S ( π2 ) * (P·1) * S

3,1 (1 / q) * (P·1) * 0 ( π3 ) * (P·1) * 0

1,2 (1 / q) * (P·2) * L ( π1 ) * (P·2) * L

2,2 (1 / q) * (P·2) * A ( π2 ) * (P·2) * A

3,2 (1 / q) * (P·2) * S ( π3 ) * (P·2) * S

1,3 (1 / q) * (P·3) * 0 ( π1 ) * (P·3) * 0

2,3 (1 / q) * (P·3) * L ( π2 ) * (P·3) * L

3,3 (1 / q) * (P·3) * A ( π3 ) * (P·3) * A

1

2

3

Value

d e f P2·

g h i P3·

Expert Panel

a b c P1·

  

 

   

     

   

     



 
Figure 3. Calculation of Lambda for a 4x4-agreement matrix. 

1 2 3 4

Rater

P·1 P·2 P·3 P·4 N

A    P(Agreement) = (a + f + k + p) / N

S    P(Strictness) = (b + c + d + g + h + l) / N

L    P(Leniency) = (e + i + j + m + n + o) / N

P1·  = (a + b + c + d) / N P·1  = (a + e + i +m) / N

P2·  = (e + f + g +h) / N P·2  = (b + f + j + n) / N

P3·  = (i + j + k + l) / N P·3  = (c + g + k + o) / N

P4·  = (m + n + o + p) / N P·4  = (d + h + l + p) / N

N  =

Cell Lambda-1 Lambda-2

1,1 (1 / q) * (P·1) * (A+S) ( π1 ) * (P·1) * (A+S)

2,1 (1 / q) * (P·1) * S ( π2 ) * (P·1) * S

3,1 (1 / q) * (P·1) * 0 ( π3 ) * (P·1) * 0

4,1 (1 / q) * (P·1) * 0 ( π4 ) * (P·1) * 0

1,2 (1 / q) * (P·2) * L ( π1 ) * (P·2) * L

2,2 (1 / q) * (P·2) * A ( π2 ) * (P·2) * A

3,2 (1 / q) * (P·2) * S ( π3 ) * (P·2) * S

4,2 (1 / q) * (P·2) * 0 ( π4 ) * (P·2) * 0

1,3 (1 / q) * (P·3) * 0 ( π1 ) * (P·3) * 0

2,3 (1 / q) * (P·3) * L ( π2 ) * (P·3) * L

3,3 (1 / q) * (P·3) * A ( π3 ) * (P·3) * A

4,3 (1 / q) * (P·3) * S ( π4 ) * (P·3) * S

1,4 (1 / q) * (P·4) * 0 ( π1 ) * (P·4) * 0

2,4 (1 / q) * (P·4) * 0 ( π2 ) * (P·4) * 0

3,4 (1 / q) * (P·4) * L ( π3 ) * (P·4) * L

4,4 (1 / q) * (P·4) * (A+L) ( π4 ) * (P·4) * (A+L)

1

2

3

4

Value

m n o p P4·

i j k l P3·

P1·

e f g h P2·

Expert Panel

a b c d

  

 

   

     

   

     



 

Figure 4. Boxplots of Kappa, Lambda-1, Lambda-2, and AC-1 across all raters in the sample for 

the exact agreement condition. 

 

Figure 5. Boxplots of Kappa, Lambda-1, Lambda-2, and AC-1 across all raters in the sample for 

the adjacent agreement condition. 

 



 

Figure 6. Kappa, Lambda-1, Lambda-2, and AC-1 for each rater under the exact agreement 

condition. 

 

 

 

 



 

Figure 7. Kappa, Lambda-1, Lambda-2, and AC-1 for each rater under the adjacent agreement 

condition. 

 

 

 



 

  

Table 4

Classification of the evaluator performance using the Altman (1991) criteria

n % n % n % n %

Exact Agreement Poor 2 3.5 1 1.8 1 1.8 0 0.0

Fair 13 22.8 2 3.5 10 17.5 3 5.3

Moderate 27 47.4 29 50.9 29 50.9 23 40.4

Good 15 26.3 22 38.6 17 29.8 28 49.1

Very Good 0 0.0 3 5.3 0 0.0 3 5.3

Adjacent Agreement Poor 0 0.0 0 0.0 1 1.8 0 0.0

Fair 2 3.5 0 0.0 3 5.3 0 0.0

Moderate 12 21.1 1 1.8 18 31.6 1 1.8

Good 31 54.4 21 36.8 28 49.1 9 15.8

Very Good 12 21.1 35 61.4 7 12.3 47 82.5

Kappa Lambda 1 Lambda 2 AC 1



 

  

Table 5

Classification of the evaluator performance using the Fleiss (1981) criteria

n % n % n % n %

Exact Agreement Poor 15 26.3 3 5.3 11 19.3 3 5.3

Fair 27 47.4 29 50.9 29 50.9 23 40.4

Good 15 26.3 22 38.6 17 29.8 28 49.1

Excellent 0 0.0 3 5.3 0 0.0 3 5.3

Adjacent Agreement Poor 2 3.5 0 0.0 4 7.0 0 0.0

Fair 12 21.1 1 1.8 18 31.6 1 1.8

Good 31 54.4 21 36.8 28 49.1 9 15.8

Excellent 12 21.1 35 61.4 7 12.3 47 82.5

Kappa Lambda 1 Lambda 2 AC 1



 

  

  

Figure 8. Simulation results. X axis = Prevalence Index, Y axis = Chance-corrected agreement. 


